Advertisement
ฟริดริก เกาส์ (Johann Carl Friedrich Gauss) ปรามจารย์ทางคณิตศาสตร์ที่ยิ่งใหญ่ที่สุด 3 ท่าน (โดยที่ไม่สามารถจะจัดได้ว่าท่านใดยิ่งใหญ่กว่ากัน)ได้แก่
อาร์คีมีดีส(Archimedes ประมาณ 287-212 ปีก่อนคริสต์ศักราช) ไอแซก นิวตัน (Isaac Newton ค.ศ.1642-1727)และเกาส์(ค.ศ.1777-1855)
เกาส์เกิดเมื่อวันที่ 30 เมษายน ค.ศ.1777 ที่เมือง Braunschweig ประเทศเยอรมนีบิดาเป็นชาวสวนและช่างปูนซึ่งไม่มีทั้งความสามารถ และความพอใจที่จะพัฒนาความสามารถทางคณิตศาสตร์ของบุตรแต่มารดา ซึ่ง ถึงแม้จะด้อยด้านการศึกษาเช่นกันแต่ให้กำลังใจบุตรในการศึกษาค้นคว้าและชื่นชมกับผลงานของบุตรตลอดชีวิต แววแห่งความเป็นอัจฉริยะของเกาส์
เกาส์แสดงความเป็นอัจฉริยะทางคณิตศาสตร์ตั้งแต่วัยเด็ก ในวันเสาร์วันหนึ่งเมื่อเกาส์อายุได้ 3ขวบขณะที่บิดาคิดค่าแรงของคนงานในควบคุมของท่านโดยไม่ได้สังเกตว่าเกาส์ได้ติดตามการคิดค่าแรงของท่านด้วยความสนใจเมื่อเสร็จสิ้นการคิดค่าแรงงานบิดาต้อง ตกใจที่บุตรน้อยเอ่ยขึ้นว่า "พ่อคิดเลขผิด ค่าแรงควรจะเป็น..." เมื่อบิดาได้ตรวจสอบการคิดเลขก็พบว่าเกาส์บอกคำตอบที่ถูกต้อง เมื่อเกาส์อายุได้ 10 ปี ขณะที่เรียนวิชาเลขคณิตกับคูรซึ่งต้องสอนนักเรียนนับร้อยในห้อง ครูต้องการ
ให้นักเรียนคิดเลขเร็วคิดเลข มาก ๆ จะได้สงบ จึงให้หาผลบวกของ 1+2+3+...+100 เกาส์คิดในใจและเขียน
คำตอบลงทันทีโดยสังเกตว่า
1+100 = 101
2+99 = 101
3+98 = 101
.
.
.
50+51 = 101
ซึ่งทั้งหมด 50 ครั้ง ดังนั้นคำตอบ คือ 50x101 หรือ 5,5050
ครูท่านนั้นได้เห็นความเป็นอัจฉริยะทางคณิตศาสตร์ของเกาส์ ได้ใช้เงินส่วนตัวชื้อแบบเรียนเลขคณิตให้เกาส์อ่านและได้กล่าว ถึงเกาส์ว่า "เขามีความสามารถเกินกว่าตน ตนไม่มีความสามรถที่จะสอนอะไรเขาอีกได้" แม้ว่าครูจะไม่สามารถจะช่วยอะไรเกาส์ต่อไปอีกได้ แต่ว่าผู้ช่วยครูชื่อ บาร์เตลส์ (Johann Martin Bartels
ค.ศ.1769-1836) ซึ่งมีอายุเพียง 17 ปี ได้ร่วมกันศึกษาแบบเรียนพีชคณิตและการวิเคราะห์เบื้องต้น ทำให้เกาส ์สนใจคณิตศาสตร์เมื่อเจริญวัยขึ้นนอก จากนั้นบาร์เตลยังแนะนำเกาส์ให้พบปะกับบุคคลที่จะช่วยเหลือเกาส์ในด้านทุนการศึกษา ดยุคแห่ง Braunschweig ได้สนับสนุนเกาส์ เมื่ออายุได้ 15 ปี ให้เข้าศึกษาที่ Collegium
Carolinum ใน Braunschweig (ค.ศ.1792-1795)
เมื่อเกาส์อายุได้ 18 ปี ท่านดยุคได้สนับสนุนให้ศึกษาที่มหาวิทยาลัย Gottingen (ค.ศ.1795-1798)ขณะที่เริ่มศึกษาที่มหา วิทยาลัยแห่งนี้เกาส์ยังไม่แน่ใจว่าจะเลือกเรียนด้านภาษาศาสตร์หรือด้ารคณิตศาสตร์ ในวันที่ 30 มีนาคม ค.ศ.1796 หนึ่งเดือนตรง ก่อนอายุ 20 ปีเกาส์ได้คิดสร้างรูป 17 เหลี่ยมด้านเท่ามุมเท่า โดยใช้เพียงวงเวียนและสันตรงได้เป็นบุคคลแรก ปัญหาการสร้างรูป เหลี่ยมด้านเท่ามุมเท่า โดยใช้เพียงวงเวียนและสันตรงนี้มีมาถึง 200 ปีก่อนแล้วสมัยกรีกโบราณ และไม่มีบุคคลใดแก้ปัญหาข้างต้นได้ ต่อมาเกาส์ได้พัฒนาทฤษฏีซึ่งแสดงว่า รูปหลายเหลี่ยมด้านเท่ามุมเท่าที่มีจำนวนเฉพาะ สามารถสร้างโดยใช้เพียงวงเวียนและสันตรงได้ก็ต่อเมื่อจำนวนนั้นอยู่ในรูป
` f(n) = 2+1
สำหรับ n=0 f(o) = 3
n=1 f(1) = 5
n=2 f(2) = 17
n=3 f(3) = 257
n=4 f(4) = 65,53
f(n) ทั้ง 5 ตัวต่างก็เป็นจำนวนเฉพาะจึงสร้างด้วยวงเวียน และสันตรงได้ทฤษฏีนี้ได้ตีพิมพ์ในหนังสือ
Disquitiones Arithmeticae ในเวลาต่อมา ตั้งแต่นั้นเป็นต้นมา เกาส์ได้ตัดสินใจอย่างแนวแน่ว่าจะศึกษาคณิตศาตร์ ท่านภาคภูมิใจในการค้นพบครั้งนี้มากท่านกล่าวว่า ท่านปราถนาให้จารึกรูป 17 เหลี่ยมด้านเท่ามุมเท่าบนศิลาเหนือหลุมฝังศพของท่านสิ่งที่ท่านปราถนาไม่ได้รับการตอบสนองเพราะช่าง แกะสลักหินยืนยันว่ารูปนั้นไม่แตกต่างวงกลม แต่อนุสาวรีย์แด่เกาส์ที่ Braunschweig มีรูป 17 เหลี่ยมด้านเท่ามุมเท่านี้จารึกไว้เนื่องจาก ความสำคัญของรูป 17 เหลี่ยมด้านเท่ามุมเท่า ในการเลือกศึกษาด้านคณิตศาสตร์ของเกาส์รูปโลโก้ของการแข่งขันคณิตศาสตร์โอลิมปิกครั้งนี้
จึงเป็นรูปของเกาส์อยู่ในรูป 17 เหลี่ยมด้านเท่ามุมเท่าแนบในวงกลม
เมื่อเกาส์อายุได้ 21 ปี ในฤดูใบไม้ร่วงปี ค.ศ.1798 ท่านได้ศึกษาระดับปริญญาเอกที่มหาวิทยาลัย Helmstedt และได้รับปริญญาเอกในปี ค.ศ.1799 ในปี ค.ศ.1807 ท่านได้รับแต่งตั้งเป็นศาสตราจารย์สาขาคณิตศาสตร์ และผู้อำนวยการหอดูดาวที่
Gottingen และทำงานที่นี่จน ถึงแก่กรรม ในปี ค.ศ.1855 เนื่องจากเกาส์เป็นนักคณิตศาสตร์ที่รอบรู้ในสาขาต่าง ๆ ของคณิตศาสตร์จึงมีผลงานครอบคลุม
เกือบทุกเรื่องที่น่าสนใจในวิชา คณิตศาสตร์ ในที่นี้จะกล่าวถึงผลงานที่สำคัญมากเท่านั้น ผลงานที่สำคัญ
1. Disquisitiones Arithmeticae (ค.ศ.1798) เป็นหนังสือรากฐานที่สำคัญยิ่งในทฤษฏีจำนวนสมัยใหม่ เนื้อหาสำคัญได้แก่
1.1 การพัฒนา congrunce พร้อมทั้งสัญลักษณ์ a=b (mod k)
1.2 พิสูจน์กฏ quadratoc reciprocity
1.3 พัฒนา gaussian integers (จำนวนในรูป a+bi โดยที่ a และ b เป็นจำนวนเต็ม)
1.4 พิสูจน์ The Fundamental Theorem of Arithmetic (ทุกจำนวนเต็มซึ่งมากกว่า 1 สามารถเขียนในรูปผลคูณของ จำนวนเฉพาะที่เป็นบวกได้แบบเดียวเท่านั้น)
ในหนังสือเล่มนี้มีทฤษฏีซึ่งเกี่ยวกับการสร้างรูปหลายเหลี่ยมด้านเท่ามุมเท่าโดยใช้เพียงวงเวียนและสันตรงดังที่ได้กล่าวแล้วด้วย
2. วิทยานิพนธ์ปริญญาเอก (ค.ศ.1799) เนื้อหาสำคัญได้แก่
พิสูจน์ The Fundamental Theorem of Algebra (สมการโพลิโนเมียลที่มีสัมประสิทธิ์เป็น
จำนวนเชิงซ้อนและมีดีกรี n จะมีรากอย่างน้อย 1 ราก)
มีการใช้ระนาบเชิงซ้อน [ซึ่ง Casper Wessel (ค.ศ.1797) และ Jean Robert Argand (ค.ศ.1806) ได้พิมพ์ก่อน] ซึ่งใน เยอรมนีเรียกว่า Gaussian piane
3. Theoria motus (ค.ศ.1809) เนื้อหาสำคัญได้แก่ วิธีการทางดาราศาสตร์ซึ่งมีชื่อเรียกว่า Gauss\'s method มีการนำวิธีการ กำลังสองน้อยสุด (method of least squares) ซึ่งท่านค้นพบก่อนLegendre มาใช้
4. มีผลงานเกี่ยวกับแม่เหล็กและไฟฟ้า ชื่อของท่านเป็นหน่วยความเข้มของสนามแม่เหล็ก
- ประวัติภาคภาษาอังกฤษ
Advertisement
เปิดอ่าน 46,351 ครั้ง เปิดอ่าน 16,937 ครั้ง เปิดอ่าน 72,313 ครั้ง เปิดอ่าน 43,056 ครั้ง เปิดอ่าน 51,702 ครั้ง เปิดอ่าน 62,188 ครั้ง เปิดอ่าน 38,029 ครั้ง เปิดอ่าน 97,208 ครั้ง เปิดอ่าน 41,886 ครั้ง เปิดอ่าน 160,530 ครั้ง เปิดอ่าน 16,591 ครั้ง เปิดอ่าน 27,500 ครั้ง เปิดอ่าน 71,152 ครั้ง เปิดอ่าน 13,693 ครั้ง เปิดอ่าน 39,936 ครั้ง เปิดอ่าน 31,514 ครั้ง
|
เปิดอ่าน 20,644 ☕ คลิกอ่านเลย |
เปิดอ่าน 258,163 ☕ คลิกอ่านเลย |
เปิดอ่าน 20,652 ☕ คลิกอ่านเลย |
เปิดอ่าน 343,145 ☕ คลิกอ่านเลย |
เปิดอ่าน 12,047 ☕ คลิกอ่านเลย |
เปิดอ่าน 72,313 ☕ คลิกอ่านเลย |
เปิดอ่าน 20,294 ☕ คลิกอ่านเลย |
|
≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡
เปิดอ่าน 12,065 ครั้ง |
เปิดอ่าน 13,128 ครั้ง |
เปิดอ่าน 11,616 ครั้ง |
เปิดอ่าน 80,137 ครั้ง |
เปิดอ่าน 39,088 ครั้ง |
|
|