ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


ข่าวการศึกษา     ความรู้ทั่วไป     งานราชการ/รัฐวิสาหกิจ/บริการสังคมคณิตศาสตร์  ▶ ข่าว/บทความ ▶ หน้าแรก

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ


คณิตศาสตร์ เปิดอ่าน : 34,935 ครั้ง
Advertisement

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

Advertisement

 

ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

 

                ฟังก์ชัน จะมีค่ารากของสมการก็ต่อเมื่อสามารถหาค่า x ที่ทำให้ฟังก์ชัน นี้มีค่าเท่ากับศูนย์ 

เราจะกล่าวว่า มีค่าราก และเรียกค่า x นี้ว่า ค่ารากของสมการ =0

 

ตัวอย่าง จงตรวจสอบว่าฟังก์ชัน มีค่ารากของสมการหรือไม่

วิธีทำ    เนื่องจากค่ารากของสมการคือค่าที่ทำให้สมการมีค่าเป็นศูนย์

             ทำให้ได้ว่า

                                        

                                                       

            นั่นคือ ค่า x = 3 และค่า x = 5 เป็นค่าที่ทำให้ฟังก์ชัน มีค่าเป็นศูนย์      

              ดังนั้นฟังก์ชัน มีค่าราก

 

เนื่องจากในการศึกษาวิชาคณิตศาสตร์นั้น มีสมการหรือฟังก์ชันที่ไม่ได้อยู่ในรูปแบบที่ง่าย แก่การแก้สมการหาค่าราก  ดังนั้นจึงมีหลักในการวิเคราะห์ค่ารากของสมการเพื่อช่วยให้การแก้ปัญหา มีความสะดวกมากยิ่งขึ้น

 

การวิเคราะห์ค่ารากของสมการ

    1. สมการนั้นมีค่ารากที่แท้จริง(Real Roots) หรือไม่

    2. สมการนั้นมีค่ารากของสมการเพียงค่าเดียว (Single Roots) หรือมีหลายค่า (Multiple Roots)

    3. ถ้าสมการมีค่าราก จะหาค่ารากได้อย่างไร

      ทั้ง 3 ข้อนี้เป็นหลักในการวิเคราะห์และคำนวณหาค่ารากของสมการ คำตอบของทั้ง 3 คำถามนี้

สามารถศึกษาได้จากสื่อการสอนบนเครือข่ายอินเทอร์เน็ตชุดนี้

 

ทฤษฎีบท มีค่าราก m-1 ค่าที่ P ก็ต่อเมื่อ และ

 

ตัวอย่าง จงตรวจสอบว่า ฟังก์ชัน มีค่ารากหรือไม่ ถ้ามีค่าราก จะมีกี่ค่า

              วิธีทำ เนื่องจาก แสดงว่าฟังก์ชัน มีค่าราก

                        พิจารณา

                                     

                        จากทฤษฎีบทข้างต้น จะได้ว่าฟังก์ชัน มีค่ารากและมีเพียงค่าเดียวเท่านั้นคือ x = 0

 

ตัวอย่าง จงหาช่วง [a,b] ที่ ของ และ f(P) = 0 และ

            วิธีทำ จากทฤษฎีบท จะได้ว่า

                          

                     จาก

                                       

                                               

                    แทน , เป็นค่าต่ำสุดสัมพัทธ์

                    แทน , เป็นค่าสูงสุดสัมพัทธ์

                    แทน ,

                    แทน ,

                    เนื่องจาก ค่าต่ำสุดและค่าสูงสุด อยู่ด้านเดียวกัน

                    ค่ารากจะอยู่ในช่วงที่มากกว่า 0

                    ไม่อยู่ในช่วงนี้

                   

                   

                    ค่ารากบนช่วง [1,2]

 

                จากตัวอย่างนี้ จะเห็นได้ว่าฟังก์ชันมีค่ารากเพียงค่าเดียว แต่ไม่ได้แสดงให้เห็นว่า

ค่ารากนั้นมีค่าเท่ากับเท่าใด แต่สามารถระบุช่วงของค่ารากได้

🖼สำหรับคุณครูไว้ใส่เกียรติบัตรสวยและถูก🖼 กรอบป้ายอะคริลิคตั้งโต๊ะ A4 แนวนอน 30x21.5 cm อะคริลิคใส 1 หน้า ทรง L (A4L1P) คลิกเลย👇👇

฿129

https://s.shopee.co.th/1qLFIZVf4t?share_channel_code=6


ความรู้เบื้องต้นเกี่ยวกับค่ารากของสมการ

Advertisement

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

เรื่องของกราฟ

เรื่องของกราฟ


เปิดอ่าน 19,813 ครั้ง
ทฤษฎีบทขิองปิทาโกรัส

ทฤษฎีบทขิองปิทาโกรัส


เปิดอ่าน 49,921 ครั้ง
จำนวนเต็ม (Integer) คืออะไร

จำนวนเต็ม (Integer) คืออะไร


เปิดอ่าน 21,079 ครั้ง
ที่มาของทฤษฏีพีทาโกรัส

ที่มาของทฤษฏีพีทาโกรัส


เปิดอ่าน 4,963 ครั้ง
ห.ร.ม. และ ค.ร.น.

ห.ร.ม. และ ค.ร.น.


เปิดอ่าน 80,804 ครั้ง
เอกภพสัมพัทธ์ (Relative Universe)

เอกภพสัมพัทธ์ (Relative Universe)


เปิดอ่าน 36,827 ครั้ง
สมการและอสมการ

สมการและอสมการ


เปิดอ่าน 71,497 ครั้ง
สูตรปริมาตรทรงกระบอก

สูตรปริมาตรทรงกระบอก


เปิดอ่าน 116,611 ครั้ง
ปีอธิกสุรทิน

ปีอธิกสุรทิน


เปิดอ่าน 42,346 ครั้ง
สรุปสูตรพาราโบลา

สรุปสูตรพาราโบลา


เปิดอ่าน 215,584 ครั้ง

:: เรื่องปักหมุด ::

โครงงานคณิตศาสตร์

โครงงานคณิตศาสตร์

เปิดอ่าน 132,099 ☕ คลิกอ่านเลย

Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
เรื่องของกราฟ
เรื่องของกราฟ
เปิดอ่าน 19,813 ☕ คลิกอ่านเลย

จำนวนตรรกยะ
จำนวนตรรกยะ
เปิดอ่าน 35,240 ☕ คลิกอ่านเลย

พื้นที่ของรูปหลายเหลี่ยม
พื้นที่ของรูปหลายเหลี่ยม
เปิดอ่าน 76,662 ☕ คลิกอ่านเลย

การประยุกต์สถิติในชีวิตประจำวัน
การประยุกต์สถิติในชีวิตประจำวัน
เปิดอ่าน 8,156 ☕ คลิกอ่านเลย

การหาพื้นที่ผิวของร่างกาย
การหาพื้นที่ผิวของร่างกาย
เปิดอ่าน 46,524 ☕ คลิกอ่านเลย

ความน่าจะเป็น
ความน่าจะเป็น
เปิดอ่าน 79,876 ☕ คลิกอ่านเลย

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

การยอมรับนวัตกรรมและเทคโนโลยี
การยอมรับนวัตกรรมและเทคโนโลยี
เปิดอ่าน 29,758 ครั้ง

"ปฏิรูปการศึกษา" ทางรอด "วิกฤติเศรษฐกิจไทย"
"ปฏิรูปการศึกษา" ทางรอด "วิกฤติเศรษฐกิจไทย"
เปิดอ่าน 7,779 ครั้ง

คัดเลือกคนจากสถาบัน
คัดเลือกคนจากสถาบัน
เปิดอ่าน 8,280 ครั้ง

มุขตลกของเด็กๆ ในห้องเรียน จำลองห้องเป็นรถเมล์
มุขตลกของเด็กๆ ในห้องเรียน จำลองห้องเป็นรถเมล์
เปิดอ่าน 17,435 ครั้ง

โรคมะเร็งจอประสาทตา (Retinoblastoma)
โรคมะเร็งจอประสาทตา (Retinoblastoma)
เปิดอ่าน 18,688 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย

 
หมวดหมู่เนื้อหา
เนื้อหา แยกตามหมวดหมู่ สามารถเลืออ่านได้ตามหมวดหมู่ที่นี่


· Technology
· บทความเทคโนโลยีการศึกษา
· e-Learning
· Graphics & Multimedia
· OpenSource & Freeware
· ซอฟต์แวร์แนะนำ
· การถ่ายภาพ
· Hot Issue
· Research Library
· Questions in ETC
· แวดวงนักเทคโนฯ

· ความรู้ทั่วไป
· คณิตศาสตร์
· วิทยาศาสตร์และเทคโนโลยี
· ภาษาต่างประเทศ
· ภาษาไทย
· สุขศึกษาและพลศึกษา
· สังคมศึกษา ศาสนาฯ
· ศิลปศึกษาและดนตรี
· การงานอาชีพ

· ข่าวการศึกษา
· ข่าวตามกระแสสังคม
· งาน/บริการสังคม
· คลิปวิดีโอยอดนิยม
· เกมส์
· เกมส์ฝึกสมอง

· ทฤษฎีทางการศึกษา
· บทความการศึกษา
· การวิจัยทางการศึกษา
· คุณครูควรรู้ไว้
· เตรียมประเมินวิทยฐานะ
· ผลงานวิชาการเล่มเต็ม
· เครื่องมือสำหรับครู

ครูบ้านนอกดอทคอม

เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

      kroobannok.com

© 2000-2020 Kroobannok.com  
All rights reserved.


Design by : kroobannok.com


ครูบ้านนอกดอทคอม
การจัดอันดับของ Truehits Web Directory

วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
 

ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

Email : kornkham@hotmail.com
Tel : 096-7158383

สนใจสนับสนุนเรา โดยลงโฆษณา
คลิกดูรายละเอียดที่นี่ครับ