ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


ข่าวการศึกษา     ความรู้ทั่วไป     งานราชการ/รัฐวิสาหกิจ/บริการสังคมเรื่องราวจากสมาชิก  ▶ ข่าว/บทความ ▶ หน้าแรก

รายงานโครงงานกราฟเส้นตรง


เรื่องราวจากสมาชิก เปิดอ่าน : 7,181 ครั้ง
Advertisement

รายงานโครงงานกราฟเส้นตรง

Advertisement

❝ คณิตศาสตร์มีความสำคัญและสัมพันธ์กับชีวิตประจำวันอยู่ตลอดเวลา ❞  

บทที่  1

บทนำ

 

ที่มาและความสำคัญของปัญหา

                  http://gotoknow.org  (ออนไลน์  :  2008 )  ได้กล่าวไว้ว่า  คณิตศาสตร์มีความสำคัญและสัมพันธ์กับชีวิตประจำวันอยู่ตลอดเวลา  เพราะเป็นวิชาที่บรูณาการกับอีกหลายๆ  สาขาวิชาเข้าด้วยกัน  ซึ่งเป็นการประยุกต์เพื่อนำไปใช้งานหรือใช้ในชีวิตจริง   เป็นดั่งสะพานที่เชื่อมโยงระหว่างโลกของคณิตกับโลกของความจริง   โดยจะเริ่มจากเรื่องง่ายๆ ไปสู่เรื่องยากๆ เพื่อผู้ที่ไม่มีพื้นความรู้ในคณิตศาสตร์  และผู้ที่ไม่รักวิชานี้จะได้เริ่มรู้เข้าใจว่าส่วนหนึ่งของคณิตศาสตร์ที่แท้จริงนั้นเป็นอย่างไร   แล้วสามารถคิดเป็น  วิเคราะห์เป็น   สามารถนำความรู้ไปใช้ได้ในชีวิตจริง ไม่ใช่แค่ท่องไปจำไปเพื่อสอบ  เพราะการที่เรียนรู้คณิตศาสตร์นั้นส่วนหนึ่งจะเป็นการเรียนรู้เกี่ยวกับธรรมชาติ   สิ่งแวดล้อม   แล้วในขณะเดียวกันก็เป็นการเรียนรู้อดีต   ปัจจุบัน   และศึกษาแนวโน้มในอนาคต    สุดท้ายเมื่อรู้รอบพอควรแล้วก็ไม่พ้นกลับมาเรียนรู้ตนเอง  สิ่งที่สังเกตได้คนที่รักคณิตศาสตร์ส่วนหนึ่งจะรักที่จะเรียนรู้ปรัชญา   เรียนรู้ธรรม   แล้วส่วนหนึ่งจะเข้าใจว่าการเรียนคณิตศาสตร์เป็นเหมือนกับประตูหรือเครื่องมือที่พาเราไปสู่โลกการเรียนรู้แบบไม่มีที่สิ้นสุด และมีส่วนทำให้เราเป็นคนที่สมบูรณ์ขึ้น   โดยคณิตศาสตร์ในชีวิตประจำวันอาจแบ่งออกได้เป็นหลายแง่มุม   ดังนี้
                 1. ความหมายและพัฒนาการความคิดทางคณิตศาสตร์ 
                 -  ความหมายของคณิตศาสตร์
                 -  พัฒนาการความคิดทางคณิตศาสตร์
                 -  การพัฒนาทักษะกระบวนการแก้ปัญหา
                 2. คณิตศาสตร์กับตัวเลขและสัญลักษณ์  
                -  ความเป็นมาและความหมายของตัวเลขและสัญลักษณ์ที่น่าสนใจ
                 -  ตัวเลขและสัญลักษณ์ที่ใช้ในชีวิตประจำวัน
                 3.  คณิตศาสตร์กับปรากฏการณ์ธรรมชาติ  
                - ตัวอย่างปรากฏการณ์ธรรมชาติที่เกี่ยวข้องในมุมมองของคณิตศาสตร์  
                - หลักการและทฤษฎีทางคณิตศาสตร์ที่เกี่ยวข้อง
                - การศึกษาความสัมพันธ์และการหาคำตอบของปรากฏการณ์ธรรมชาติที่น่าสนใจ
                - ปรากฏการณ์ธรรมชาติ และสิ่งก่อสร้างที่เกี่ยวกับสัดส่วนทองคำ (Golden ratio)

                 4.  คณิตศาสตร์กับศิลปะและความงาม 
                 - ความสวยงามในมุมมองของคณิตศาสตร์  (Heart curve ,  Fractal , Golden ratio, …)
                  - เรขาคณิตกับศิลป ( Origami , Tangram , …)
                  - ตัวอย่างการออกแบบลวดลาย (Patterns, Tilings, Tessellations, ลายไทย, การออกแบบ ลวดลายผ้า, การปักครอสติส,การร้อยลูกปัด, ...)
                  - ตัวอย่างการออกแบบโครงสร้าง (โครงสร้างอาคาร, แผนที่เขาวงกต,  ...)
                  - ความสวยงามของผลึก/โครงสร้างอะตอม
                 5 .  คณิตศาสตร์กับเทคโนโลยี 
                  - ระบบเลขฐานกับเทคโนโลยี
                  - จากลูกคิดสู่คอมพิวเตอร์
                  - Discrete mathematics 
                  - Fuzzy logic กับเทคโนโลยี 
                  - คอมพิวเตอร์กราฟฟิก / เกม กับคณิตศาสตร์
                  - รหัสผ่านและการเข้ารหัสถอดรหัส 
                  - การประมวลผลภาพ ในมุมมองของคณิตศาสตร์ 
                  - การอ่านลายนิ้วมือ หรือ ม่านตา ที่เกี่ยวกับ คณิตศาสตร์
                  - ไวรัสคอมพิวเตอร์ กับ คณิตศาสตร์
                  - ภาพถ่ายดาวเทียมความรู้เกี่ยวกับแผนที่เบื้องต้น, ระบบสารสนเทศภูมิศาสตร์ (Geographic Information System, GIS)
                   - รหัสพันธุกรรม
                 6.  คณิตศาสตร์กับการแก้ปัญหาและตัดสินใจในชีวิตประจำวัน  
                  - มาตรา การชั่ง ตวง วัด
                  - ดัชนีมวลกาย และ การหาพื้นที่ผิวของร่างกาย
                  - การคิดค่าสาธารณูปโภค (ค่าน้ำ, ค่าไฟ)
                  - การเสียภาษีรายได้
                  - การฝากเงิน การกู้เงิน ดอกเบี้ย 
                  - คณิตศาสตร์ กับ เกม / การพนัน / การเสี่ยงโชค
                  - คลื่นเสียง กับ คณิตศาสตร์
                  - ดนตรี กับ คณิตศาสตร์
                  - ทักษะในการคิดเลขเร็ว   (คณิตศาสตร์กับลูกคิด, Vedic Mathematics,…)
                 7.  คณิตศาสตร์กับศาสนาและความเชื่อ  
                  - คณิตศาสตร์ในศาสนาหรือนิกายต่างๆ 
                 - ความเชื่อและสัญลักษณ์ที่เกี่ยวกับคณิตศาสตร์ ( Mandala , หยินหยาง, โป๊ยก่วย. ยันต์)   
                 - คณิตศาสตร์ สถิติ ความน่าจะเป็นกับการพยากรณ์ (โหราศาสตร์, อี้จิง, เซียมซี,  Numerology, …) 
                 - เรียนรู้บุคลิกภาพ/เรียนรู้ใจตนเอง จากตัวเลข
                8.  แนวคิดเบื้องต้นเกี่ยวกับแบบจำลองทางคณิตศาสตร์
                 - ประเภทของแบบจำลองทางคณิตศาสตร์
                 - การสร้างแบบจำลองทางคณิตศาสตร์
                 - ตัวอย่างแบบจำลองทางคณิตศาสตร์
                 - การประยุกต์ใช้แบบจำลองทางคณิตศาสตร์

                http://web.ku.ac.th  (ออนไลน์ : 2008)  ยังได้อธิบายไว้ว่า  คณิตศาสตร์ในชีวิตประจำวัน     น่าจะหมายถึง   การใช้วิธีการคำนวณทางคณิตศาสตร์ในการแก้ไขปัญหาบางประการในชีวิตประจำวัน   เช่น   ถ้าจะเดินทางจากจังหวัดแพร่มากรุงเทพฯ อยากจะทราบว่า ค่าใช้จ่ายในการเดินทางโดยทางรถไฟ  กับรถยนต์โดยสารปรับอากาศ เมื่อรวมค่ารถรับจ้างจากสถานีรถไฟ หรือสถานีขนส่งสายเหนือที่นักเรียนจะต้องจ่ายแล้ว ควรจะเลือกเดินทางด้วยวิธีใดดี ปัญหาที่กล่าวมานี้ใช้การบวกในการแก้ปัญหา    

                 จากลักษณะของรายวิชาคณิตศาสตร์ดังกล่าว  คณะผู้จัดทำโครงงานได้เล็งเห็นถึงความสำคัญของการนำคณิตศาสตร์มาใช้ในการแก้ปัญหาที่เกิดขึ้นในชีวิตประจำวัน  จึงได้ร่วมกันปรึกษาหารือภายในกลุ่มในการเลือกปัญหาที่เกิดขึ้นในชีวิตประจำวัน   และผลการศึกษาโครงงานนั้นจะต้องสามารถไปใช้ได้จริง   ซึ่งปัญหาที่กลุ่มได้เลือกมานั้นคือถ้าต้องการคัดเลือกตัวนักกีฑาประเภทกระโดดสูง  และกระโดดไกล   ลักษณะทางกายของตัวนักกีฑาจะต้องเป็นเช่นไรจึงจะสามารถกระโดดได้สูง  และลักษณะทางกายของตัวนักกีฑาจะต้องเป็นเช่นไรจึงจะสามารถกระโดดได้ไกล   ซึ่งการวิเคราะห์ผลการศึกษานี้จะใช้กราฟเส้นตรงที่ทางผู้จัดทำโครงงานได้เขียนกราฟขึ้นมาโดยใช้ข้อมูลจากผลการทดลองของนักเรียนจำนวน  30  คน   และนำกราฟแสดงเกณฑ์การเจริญเติบโตของกรมอนามัยเป็นเกณฑ์มาตรฐานในการวิเคราะห์ผลการศึกษา   จากผลการศึกษาของปัญหานี้สามารถนำไปใช้ประโยชน์กับรายวิชาพละศึกษาในการคัดเลือกตัวนักกีฑาประเภทกระโดดสูง  และกระโดดไกลได้ 

                  ดังนั้น  คณะผู้จัดทำโครงงานจึงมีความสนใจที่จะแก้ปัญหานี้  เพื่อนำผลของการศึกษาไปใช้ประโยชน์กับรายวิชาพละศึกษาในการคัดเลือกตัวนักกีฑาประเภทกระโดดสูง  และกระโดดไกลได้จริงๆ 

 

วัตถุประสงค์ของการทำโครงงาน

                    2.1  เพื่อเขียนกราฟเส้นตรงและหาสมการเส้นตรงจากกราฟแสดงความสัมพันธ์ระหว่างการกระโดดสูง  และกระโดดไกลได้อย่างเหมาะสม  ถูกต้องตามหลักทฤษฎี

                 2.2  เพื่อวิเคราะห์ลักษณะทางกายที่มีผลต่อการกระโดดไกลและกระโดดสูงของนักเรียนโดยใช้กราฟ

 

สมมติฐานของการทำโครงงาน

                   3.1  กราฟเส้นตรงและสมการเส้นตรงจากกราฟแสดงความสัมพันธ์ระหว่างการกระโดดสูง  และกระโดดไกลมีความเหมาะสม  ถูกต้องตามหลักทฤษฎี

                 3.2  นักเรียนที่มีลักษณะทางกายโดยมีส่วนสูงตามเกณฑ์  น้ำหนักตัวตามเกณฑ์จะกระโดดได้ไกล

                   3.3  นักเรียนที่มีลักษณะทางกายโดยมีส่วนสูงตามเกณฑ์   จะกระโดดได้สูง

 

ขอบเขตของการทำโครงงาน

                  1.  ประชากร ได้แก่ นักเรียนโรงเรียนคลองลานพัฒนาจินดาศักดิ์  สำนักงานเขตพื้นที่การศึกษากำแพงเพชร  เขต 2  จำนวน  30  คน

                2.  กลุ่มตัวอย่าง ได้แก่ นักเรียนโรงเรียนคลองลานพัฒนาจินดาศักดิ์  สำนักงานเขตพื้นที่การศึกษากำแพงเพชร  เขต 2  จำนวน  30  คน

                3.  ตัวแปรที่ศึกษา

                     3.1  ตามวัตถุประสงข้อที่  1  ตัวแปรที่ศึกษาได้แก่  คือ 

                                3.1.1  ตัวแปรอิสระ  ได้แก่

                                       3.1.1.1  การกระโดดสูง 

                                       3.1.1.2  การกระโดดไกล  

                         3.1.2  ตัวแปรตาม  ได้แก่

                                       3.1.2.1   กราฟเส้นตรง 

                                   3.1.2.2   สมการเส้นตรง

                     3.2  ตามวัตถุประสงข้อที่  2  ตัวแปรที่ศึกษาได้แก่  คือ 

                                3.2.1  ตัวแปรอิสระ  ได้แก่

                                       3.2.1.1  ลักษณะทางกาย

                         3.2.2  ตัวแปรตาม  ได้แก่

                                       3.2.2.1  การกระโดดไกล 

                                       3.2.2.2  การกระโดดสูง

 

5.   ข้อตกลงเบื้องต้น

                5.1  กลุ่มนักเรียนที่กระโดดสูงและกระโดดไกลเป็นกลุ่มเดียวกัน

 

6.   ประโยชน์ที่ได้รับจากการวิจัย

                   6.1  ได้กราฟเส้นตรงและสมการเส้นตรงจากกราฟแสดงความสัมพันธ์ระหว่างการกระโดดสูง  และกระโดดไกลโดยกราฟที่ได้มีความเหมาะสม  ถูกต้องตามหลักทฤษฎี

                 6.2   จากผลของการศึกษาสามารถนำผลไปใช้ประโยชน์ในการคัดเลือกตัวนักกีฑาประเภทกระโดดสูง  และกระโดดไกลได้ 

                 6.3  เป็นแนวทางในการวิจัยเพื่อการคัดเลือกตัวนักกีฬา  และกรีฑาในกลุ่มวิชาพลศึกษา โดยใช้กราฟ

 

 

 

 

 

 

 

 

 

 

 

บทที่  2

เอกสาร  และงานวิจัยที่เกี่ยวข้อง

 

                  การจัดทำโครงงานคณิตศาสตร์เรื่อง  กราฟเส้นตรงกับกระโดด  ของนักเรียนโรงเรียนคลองลานพัฒนาจินดาศักดิ์  สังกัดสำนักงานเขตพื้นที่การศึกษากำแพงเพชร  เขต 2  คณะผู้จัดทำโครงงานได้ศึกษาค้นคว้าจากตำรา  เอกสาร และสืบค้นข้อมูลจากอินเตอร์เน็ตที่เกี่ยวข้องกับกราฟเส้นตรงและสมการเส้นตรง  โดยนำรายละเอียดตามลำดับ  ดังต่อไปนี้

                  1.   สมการเส้นตรงและกราฟเส้นตรง

                        1.1  ระบบพิกัดฉาก

                        1.2  คู่อันดับ

                        1.3  ความชันของเส้นตรง

                        1.4  สมการของเส้นตรง

 

สมการเส้นตรงและกราฟเส้นตรง

                1.  ระบบพิกัดฉาก (Rectangular Coordinate System)

เส้นจำนวนจริง (real number line)   ซึ่งเรียกสั้น ๆ กันว่า เส้นจำนวน ดังรูปที่ 3.1

 


                                         -3      -2      -1       0        1        2       3        4

รูป 3.1

                เมื่อนำเส้นจำนวนจริงสองเส้นมาตัดกันเป็นมุมฉากแล้วเรียกว่า ระนาบ (plane) หรือ ระบบ พิกัดฉาก (Rectangular Coordinate System or Cartesian Plane) จุดที่ทั้งสองเส้นตัดกันที่จุด o และเรียกว่า จุดกำเนิด (origin) เรียกเส้นจำนวนจริงในแนวนอนว่า แกน x (x-axis) และเส้นจำนวนในแนวตั้งว่า แกน y (y-axis) แกนทั้งสองแบ่งระนาบออกเป็นสี่บริเวณ เรียกว่า จตุภาค (quadrant) ให้บริเวณขวาบนเป็นจตุภาคที่หนึ่ง ส่วนจตุภาคลำดับต่อไปกำหนดโดยการนับทวน เข็มนาฬิกา       ดังรูป 3.2 

 

รูป 3.2

เราเรียกจุดแต่ละจุดบนระนาบซึ่งแทนด้วยคู่อันดับ (x,y) ของจำนวนจริง x และ y ว่า จุดพิกัด (coordinate) หรือ คู่อันดับ (ordered pair) จำนวนแรก ของคู่อันดับหรือพิกัด x (x-coordinate) บอกระยะจากจุดกำเนิดไปทางซ้าย (-) หรือขวา (+) เป็นระยะ |x| หน่วย และ จำนวนที่สองของคู่อันดับหรือพิกัด y (y-coordinate) บอกระยะ จากจุดกำเนิดไปข้างบน (+)หรือ ลงข้างล่าง (-) เป็นระยะ |y| หน่วย ตัวอย่างต่อไป จะช่วยให้เข้าใจยิ่งขึ้น

 ตัวอย่าง 3.1  จงลงจุด (-2,1), (4,0), (3,-1), (4,3), (0,0) และ (-1,-3) บนระบบพิกัดฉาก

                วิธีทำ      จุด (-2,1) มีระยะห่างจากจุดกำเนิดไปทางซ้ายสองหน่วยและอยู่เหนือแกน x เป็นระยะหนึ่งหน่วย เป็นต้น

รูป 3.3

o

                2.  คู่อันดับแทนผลเฉลย (Ordered Pairs as Solutions)

                โดยทั่วไปแล้วในชีวิตประจำวันเรามักพบเห็นข้อมูลที่มีความสัมพันธ์ระหว่างกัน เช่น ข้อมูลแสดงจำนวนประชากรในแต่ละปีเป็นตัวอย่างหนึ่งที่แสดงความสัมพันธ์ระหว่างจำนวน ประชากรและปีที่สำรวจ  ซึ่งส่วนใหญ่แสดงข้อมูลไว้ในรูปของตาราง ส่วนในทางคณิตศาสตร์ ความสัมพันธ์ระหว่าง x และ y ถ้าหากค่า y ขึ้นอยู่กับค่า x เรียก y ว่า ตัวแปรตาม (dependent variable) และ เรียก x ว่า ตัวแปรอิสระ (independent variable) และเรียก y ว่าเป็นสมการของตัว แปร x และจากความสัมพันธ์ในรูปของสมการสามารถนำมาสร้างตารางข้อมูลได้  ก่อนอื่น เราลองพิจารณาตัวอย่างต่อไปนี้เพื่อให้เกิดความเข้าใจที่ดีขึ้นในความสัมพันธ์ระหว่างตัวแปร x และ y ในรูปของคู่อันดับ (x, y) นั่นคือค่า x และ y สอดคล้องกับสมการที่กำหนด และเรียกคู่อันดับ (x, y) ว่า จุดผลเฉลย (solution point) ของสมการ

เมื่อกำหนดคู่อันดับต่าง ๆ มาให้ และให้พิจารณาว่า คู่อันดับใดเป็นจุดผลเฉลยของ สมการ เราสามารถตรวจสอบได้โดยการแทนค่า x และ y ของคู่ อันดับลงไปในสมการ หากคู่อันดับใดที่ทำให้สมการเป็นจริงจะได้ว่าคู่อันดับนั้นเป็นจุดผลเฉลยของสมการดัง กล่าว

 

ตัวอย่าง 3.2          จงพิจารณาว่าคู่อันดับใดเป็นจุดผลเฉลยของสมการ y = 10x – 7

.  (1,3)                                .  (2,10)                              .  (-2,-27)                          .  (-1,5)

  วิธีทำ   .  สำหรับคู่อันดับ (1,3) เราแทน  x = 1  ทางซ้ายของสมการจะได้

                                ดังนั้น (1,3) เป็นจุดผลเฉลยของสมการ y = 10x – 7

                .  สำหรับคู่อันดับ (2,10) เราแทน  x = 2  ทางซ้ายของสมการจะได้

                                ดังนั้น (2,10) ไม่เป็นจุดผลเฉลยของสมการ y = 10x – 7

                ค. สำหรับคู่อันดับ (-2,-27) เราแทน  x = -2  ทางซ้ายของสมการจะได้

                                ดังนั้น (-2,-27) เป็นจุดผลเฉลยของสมการ y = 10x – 7

                ง. สำหรับคู่อันดับ (-1,5) เราแทน  x = -1  ทางซ้ายของสมการจะได้

                                ดังนั้น (-1,5) ไม่เป็นจุดผลเฉลยของสมการ y = 10x – 7                                           o

 

ตัวอย่างต่อไปเป็นการสร้าง ตารางจุดผลเฉลย (table of solution points) จากสมการที่กำหนดให้

 

ตัวอย่าง 3.3          จงสร้างตารางแสดงค่าสำหรับสมการ y = 3x + 2 แล้วลงจุดพิกัดหรือจุดผลเฉลย ที่ได้บนระบบพิกัดฉาก  โดยกำหนดให้ค่าของ x เป็น -3, -2, -1, 0, 1, 2  และ 3

                วิธีทำ     ก่อนอื่นเราต้องคำนวณค่า y ที่สอดคล้องกับค่า x  แต่ละค่าที่กำหนดให้ ตัวอย่างเช่น ถ้าเราให้ x = 1 แล้ว y = 3(1) + 2 = 5              คู่อันดับ (x,y) = (1,5) เป็นจุดผลเฉลยหนึ่งของสมการที่ กำหนดให้

 

x (กำหนดให้)

y (คำนวณจาก y = 3x + 2)

จุดผลเฉลย (x,y)


รายงานโครงงานกราฟเส้นตรง

Advertisement

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

สดชื่น สุขสันต์ 2010 นะคะ..

สดชื่น สุขสันต์ 2010 นะคะ..


เปิดอ่าน 7,409 ครั้ง
ไม่มีอะไร อยู่ตลอดไป

ไม่มีอะไร อยู่ตลอดไป


เปิดอ่าน 7,140 ครั้ง
สวยสบาย...ใน 5 นาที

สวยสบาย...ใน 5 นาที


เปิดอ่าน 7,143 ครั้ง
มาดู.....แม่ลูกดารากันบ้าง

มาดู.....แม่ลูกดารากันบ้าง


เปิดอ่าน 7,135 ครั้ง
บุคลิกภาพ...ก็จะทราบอาชีพ

บุคลิกภาพ...ก็จะทราบอาชีพ


เปิดอ่าน 7,148 ครั้ง
เผยแพร่ผลงานทางวิชาการ

เผยแพร่ผลงานทางวิชาการ


เปิดอ่าน 7,138 ครั้ง
 10 สุดยอดคำสาป...ของโลก

10 สุดยอดคำสาป...ของโลก


เปิดอ่าน 7,137 ครั้ง
งานวิจัย

งานวิจัย


เปิดอ่าน 7,141 ครั้ง

:: เรื่องปักหมุด ::

ตำรายาสมุนไพรสารพัดประโยชน์...>>>>>

ตำรายาสมุนไพรสารพัดประโยชน์...>>>>>

เปิดอ่าน 7,153 ☕ คลิกอ่านเลย

Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
เลขตัวโปรดของคุณ...บอกนิสัยได้
เลขตัวโปรดของคุณ...บอกนิสัยได้
เปิดอ่าน 7,141 ☕ คลิกอ่านเลย

เป็นคน...อย่าเป็นคนดี(เรื่องจริงน่าคิด)
เป็นคน...อย่าเป็นคนดี(เรื่องจริงน่าคิด)
เปิดอ่าน 7,141 ☕ คลิกอ่านเลย

10 วิธีถนอมสายตา หน้าจอคอมพิวเตอร์
10 วิธีถนอมสายตา หน้าจอคอมพิวเตอร์
เปิดอ่าน 7,138 ☕ คลิกอ่านเลย

ขำขำ : ข้อควรระวัง!! อย่าโกหกเด็ก
ขำขำ : ข้อควรระวัง!! อย่าโกหกเด็ก
เปิดอ่าน 7,140 ☕ คลิกอ่านเลย

หวานได้ไม่ทำลายสุขภาพ
หวานได้ไม่ทำลายสุขภาพ
เปิดอ่าน 7,136 ☕ คลิกอ่านเลย

คุณค่า...ชะอม...ผักสวนครัวรั้วกินได้
คุณค่า...ชะอม...ผักสวนครัวรั้วกินได้
เปิดอ่าน 7,143 ☕ คลิกอ่านเลย

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

ประโยชน์ของ "กล้วยหอมทอง" ที่มีต่อสุขภาพ
ประโยชน์ของ "กล้วยหอมทอง" ที่มีต่อสุขภาพ
เปิดอ่าน 15,210 ครั้ง

ลดความอ้วน ทำได้ ไม่ต้องพึ่งยา
ลดความอ้วน ทำได้ ไม่ต้องพึ่งยา
เปิดอ่าน 12,962 ครั้ง

(ร่าง)กรอบทิศทางแผนการศึกษาชาติ พ.ศ. ๒๕๖๐ - ๒๕๗๔
(ร่าง)กรอบทิศทางแผนการศึกษาชาติ พ.ศ. ๒๕๖๐ - ๒๕๗๔
เปิดอ่าน 8,886 ครั้ง

วิธีลดต้นแขนแบบง่าย ๆ ได้ผลชัวร์
วิธีลดต้นแขนแบบง่าย ๆ ได้ผลชัวร์
เปิดอ่าน 20,554 ครั้ง

อันตราย! ขวดนม 80% มีสารเคมีอันตราย กระทบระบบสืบพันธุ์
อันตราย! ขวดนม 80% มีสารเคมีอันตราย กระทบระบบสืบพันธุ์
เปิดอ่าน 18,518 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย

 
หมวดหมู่เนื้อหา
เนื้อหา แยกตามหมวดหมู่ สามารถเลืออ่านได้ตามหมวดหมู่ที่นี่


· Technology
· บทความเทคโนโลยีการศึกษา
· e-Learning
· Graphics & Multimedia
· OpenSource & Freeware
· ซอฟต์แวร์แนะนำ
· การถ่ายภาพ
· Hot Issue
· Research Library
· Questions in ETC
· แวดวงนักเทคโนฯ

· ความรู้ทั่วไป
· คณิตศาสตร์
· วิทยาศาสตร์และเทคโนโลยี
· ภาษาต่างประเทศ
· ภาษาไทย
· สุขศึกษาและพลศึกษา
· สังคมศึกษา ศาสนาฯ
· ศิลปศึกษาและดนตรี
· การงานอาชีพ

· ข่าวการศึกษา
· ข่าวตามกระแสสังคม
· งาน/บริการสังคม
· คลิปวิดีโอยอดนิยม
· เกมส์
· เกมส์ฝึกสมอง

· ทฤษฎีทางการศึกษา
· บทความการศึกษา
· การวิจัยทางการศึกษา
· คุณครูควรรู้ไว้
· เตรียมประเมินวิทยฐานะ
· ผลงานวิชาการเล่มเต็ม
· เครื่องมือสำหรับครู

ครูบ้านนอกดอทคอม

เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

      kroobannok.com

© 2000-2020 Kroobannok.com  
All rights reserved.


Design by : kroobannok.com


ครูบ้านนอกดอทคอม
การจัดอันดับของ Truehits Web Directory

วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
 

ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

Email : kornkham@hotmail.com
Tel : 096-7158383

สนใจสนับสนุนเรา โดยลงโฆษณา
คลิกดูรายละเอียดที่นี่ครับ