ปิแอร์ เดอ แฟร์มาต์ (Pierre de Fermat)
แฟร์มาต์เป็นชาวฝรั่งเศส เป็นนักคณิตศาสตร์ในยุคของการพัฒนาศิลปวิทยา เขาเกิดในวันที่ 17 เดือนสิงหาคม ค.ศ. 1601 แฟร์มาต์เป็นบุตรชายพ่อค้าขายเครื่องหนังผู้มั่งคั่งคนหนึ่งของฝรั่งเศส แฟร์มาต์มีผลงานที่สำคัญในเรื่องทฤษฎีความน่าจะเป็น
ผลงานคิดค้นทางคณิตศาสตร์ของแฟร์มาต์ที่น่าสนใจและเป็นรากฐานในวิชาแคลคูลัสต่อมา คือ Method for determining Maxima and Minima and Tangents of Curved Lines ผลงานคิดค้นส่วนนี้ทำให้สามารถคำนวณหาจุดสูงสุดต่ำสุด และเส้นสัมผัสของรูปกราฟ ความสัมพันธ์แบบต่าง ๆ และเข้าไปสู่เรื่องเรขาคณิตแบบใหม่ แฟร์มาต์ยังคงเขียนหนังสือเกี่ยวกับเรขาคณิตแบบใหม่นี้ โดยเน้นการวิเคราะห์พื้นผิว และรูปทรงต่าง ๆ โดยให้ชื่อหนังสือว่า Introduction to Plane and Solid Loci
งานที่มีชื่อเสียงและเป็นที่กล่าวถึงของนักคณิตศาสตร์และชนรุ่นหลังอย่างมาก คือ แฟร์มาต์ได้เสนอทฤษฎีที่เรียกว่า ทฤษฎีบทสุดท้ายของแฟร์มาต์
แฟร์มาต์ยังได้ทำการศึกษาและให้ข้อมูลเพิ่มเติมเกี่ยวกับเลขจำนวนเฉพาะ และต่อมาได้เรียกกันว่า ตัวเลขของแฟร์มาต์ (Fermat Number)
ทฤษฎีบทสุดท้ายของแฟร์มาต์
ทฤษฎีบทสุดท้ายเป็นข้อคิดของแฟร์มาต์ ที่นำเสนอว่า จากสมการ xn + yn = zn ไม่มีทางเป็นไปได้ เมื่อ n มีค่ามากกว่า 2 และ n, x, y, z เป็นเลขจำนวนเต็ม หรือกล่าวได้ว่า ถ้าให้ x, y, z เป็นเลขจำนวนเต็มใด ๆ และ n เป็นเลขจำนวนเต็มที่มีค่ามากกว่า 2 แล้ว xn + yn จะต้องไม่เท่ากับ zn
จากทฤษฎีนี้ทำให้มีการตื่นตัวหาวิธีการพิสูจน์ จนเวลาหลายร้อยปี ผู้คนยังพยายามหาทางพิสูจน์ทฤษฎีบทสุดท้ายนี้ ทำให้มีความตื่นตัวในการศึกษาคณิตศาสตร์กันอย่างกว้างขวาง
ตัวเลขของแฟร์มาต์ (Fermat Number)
ความคิดในเรื่องเลขจำนวนเฉพาะได้มีการศึกษากันมาตั้งแต่สมัยยูคลิด ยูคลิดได้กล่าวว่าตัวเลขใด ๆ สามารถเขียนอยู่ในรูปผลคูณของตัวเลขจำนวนเฉพาะ หรือกล่าวได้ว่าตัวเลขใด ๆ จะต้องมีตัวประกอบเป็นเลขจำนวนเฉพาะได้เสมอ
N = p1p2p3...pn
เมื่อ p หมายถีงตัวเลขจำนวนเฉพาะ หรือ 1
ยูคลิดยังได้พิสูจน์ให้เห็นว่า ในระบบเลขจำนวนเฉพาะ จะมีจำนวนตัวเลขจำนวนเฉพาะได้อนันต์
แฟร์มาต์ได้ทำการศึกษาเลขจำนวนเฉพาะ และได้พิสูจน์ให้เห็นว่า ตัวเลขจำนวนเฉพาะใด ๆ ที่มีรูปแบบเป็น
4n + 1 ตัวเลขจำนวนเฉพาะนี้จะเขียนให้อยู่ในรูปแบบของตัวเลขยกกำลังสองของตัวเลขสองตัวรวมกัน เช่น
5 เป็นเลขจำนวนเฉพาะ
5 = 4n + 1 = 4 x 1 + 1 (n = 1)
ซึ่งเขียนได้ เป็น
5 = 22 + 12
หรือตัวอย่าง
13 = 4 x 3 + 1
เขียน
13 = 32 + 22
แฟร์มาต์ยังพิสูจน์ให้เห็นว่า 2n + 1 เป็นเลขจำนวนเฉพาะ ถ้าหาว่า n มีค่าเป็นตัวเลขของสองยกกำลัง เช่น
21 + 1 = 3
22 + 1 = 5
24 + 1 = 17
28 + 1 = 257
.
.
.
n = 1, 2, 4, 8, 16,....
ตัวเลขจำนวนเฉพาะในกรณีนี้เรียกว่า ตัวเลขแฟร์มาต์ หลังจากนั้นต่อมาอีกประมาณ 100 ปี ออยเลอร์ (Euler) ได้พิสูจน์ให้เห็นว่าที่แฟร์มาต์ กล่าวมานี้ไม่เป็นจริงเพราะ 232 + 1 เท่ากับ 4,294,967,297 เป็นตัวเลขที่ไม่ใช่เลขจำนวนเฉพาะ เพราะหารด้วย 641 ได้ลงตัว
Marin Mersenne ได้ทำการศึกษาเลขจำนวนเฉพาะในรูปแบบ 2n - 1 ซึ่งพบว่า 2n - 1 ไม่เป็นจำนวนเฉพาะทุกตัว ตัวเลขจำนวนเฉพาะที่อยู่ในรูป 2n - 1 เรียกว่า Mersenne number จนถึงปัจจุบันนี้มีผู้พบตัวเลข Merssenne 37 ตัว ตัวเลขที่ใหญ่ที่สุด คือ 23,021,337 - 1 เป็นเลขจำนวนเฉพาะที่มีขนาด 909526 ตัวเลข
จากการศึกษาเลขจำนวนเฉพาะมาตั้งแต่อดีตจนถึงปัจจุบัน ยังมีคำถามที่ยังหาคำตอบไม่ได้เกี่ยวกับเลขจำนวนเฉพาะอยู่มากมาย เช่น
- มีเลขจำนวนเฉพาะที่อยู่ในรูปแบบ n2 + 1 อยู่อนันต์ตัว
- ระหว่างตัวเลข n2 และ (n + 1)2 อย่างต้องมีเลขจำนวนเฉพาะอยู่ด้วย
- ตัวเลขแฟร์มาต์ที่เป็นเลขจำนวนเฉพาะมีได้อนันต์ตัว
ความคิดเกี่ยวกับเรื่องเลขจำนวนเฉพาะ จึงเป็นโจทย์ที่ยังต้องการหาผู้คิดค้นได้อีก
ที่มา : รศ. ยืน ภู่วรวรรณ, สำนักบริการคอมพิวเตอร์ มหาวิทยาลัยเกษตรศาสตร์
http://blog.eduzones.com/dena/4114