ค้นหาทุกอย่างในเว็บครูบ้านนอก :
ชุมชนครู บุคลากรทางการศึกษา และนักเรียน แหล่งความรู้สำหรับครู นักเรียน ข่าวการศึกษา ห้องสมุดความรู้ทุกกลุ่มสาระการเรียนรู้ และความรู้ทั่วไป เผยแพร่ผลงานวิชาการ ที่นี่


หน้าแรกครูบ้านนอก > ข่าว/บทความ > คณิตศาสตร์ > ปิแอร์ เดอ แฟร์มาต์ นัก คณิตศาสตร์

ปิแอร์ เดอ แฟร์มาต์ นัก คณิตศาสตร์

🗓 โพสต์เมื่อวันที่ : 2 ก.ค. 2551 เปิดอ่าน : 21,884 ครั้ง

Advertisement

☰แชร์ >  
Share on Google+ LINE it!
เพิ่มเพื่อน
ปิแอร์ เดอ แฟร์มาต์ นัก คณิตศาสตร์

Advertisement

ปิแอร์ เดอ แฟร์มาต์ (Pierre de Fermat)

            แฟร์มาต์เป็นชาวฝรั่งเศส เป็นนักคณิตศาสตร์ในยุคของการพัฒนาศิลปวิทยา เขาเกิดในวันที่ 17 เดือนสิงหาคม ค.ศ. 1601 แฟร์มาต์เป็นบุตรชายพ่อค้าขายเครื่องหนังผู้มั่งคั่งคนหนึ่งของฝรั่งเศส  แฟร์มาต์มีผลงานที่สำคัญในเรื่องทฤษฎีความน่าจะเป็น 

แฟร์มาต์


            ผลงานคิดค้นทางคณิตศาสตร์ของแฟร์มาต์ที่น่าสนใจและเป็นรากฐานในวิชาแคลคูลัสต่อมา คือ Method for determining Maxima and Minima and Tangents of Curved Lines ผลงานคิดค้นส่วนนี้ทำให้สามารถคำนวณหาจุดสูงสุดต่ำสุด และเส้นสัมผัสของรูปกราฟ ความสัมพันธ์แบบต่าง ๆ  และเข้าไปสู่เรื่องเรขาคณิตแบบใหม่  แฟร์มาต์ยังคงเขียนหนังสือเกี่ยวกับเรขาคณิตแบบใหม่นี้  โดยเน้นการวิเคราะห์พื้นผิว และรูปทรงต่าง ๆ  โดยให้ชื่อหนังสือว่า Introduction to Plane and Solid Loci

            งานที่มีชื่อเสียงและเป็นที่กล่าวถึงของนักคณิตศาสตร์และชนรุ่นหลังอย่างมาก คือ แฟร์มาต์ได้เสนอทฤษฎีที่เรียกว่า ทฤษฎีบทสุดท้ายของแฟร์มาต์

            แฟร์มาต์ยังได้ทำการศึกษาและให้ข้อมูลเพิ่มเติมเกี่ยวกับเลขจำนวนเฉพาะ  และต่อมาได้เรียกกันว่า ตัวเลขของแฟร์มาต์ (Fermat Number)

ทฤษฎีบทสุดท้ายของแฟร์มาต์

ทฤษฎีบทสุดท้ายเป็นข้อคิดของแฟร์มาต์ ที่นำเสนอว่า จากสมการ xn + yn = zไม่มีทางเป็นไปได้ เมื่อ n มีค่ามากกว่า 2 และ n, x, y, z เป็นเลขจำนวนเต็ม หรือกล่าวได้ว่า ถ้าให้ x, y, z  เป็นเลขจำนวนเต็มใด ๆ และ n เป็นเลขจำนวนเต็มที่มีค่ามากกว่า 2 แล้ว  xn + yn จะต้องไม่เท่ากับ zn

 

จากทฤษฎีนี้ทำให้มีการตื่นตัวหาวิธีการพิสูจน์ จนเวลาหลายร้อยปี ผู้คนยังพยายามหาทางพิสูจน์ทฤษฎีบทสุดท้ายนี้ ทำให้มีความตื่นตัวในการศึกษาคณิตศาสตร์กันอย่างกว้างขวาง

ตัวเลขของแฟร์มาต์ (Fermat Number)

                    ความคิดในเรื่องเลขจำนวนเฉพาะได้มีการศึกษากันมาตั้งแต่สมัยยูคลิด  ยูคลิดได้กล่าวว่าตัวเลขใด ๆ สามารถเขียนอยู่ในรูปผลคูณของตัวเลขจำนวนเฉพาะ หรือกล่าวได้ว่าตัวเลขใด ๆ จะต้องมีตัวประกอบเป็นเลขจำนวนเฉพาะได้เสมอ

                                                                                                                   N = p1p2p3...pn
                                                                                     เมื่อ p หมายถีงตัวเลขจำนวนเฉพาะ หรือ  1

                    ยูคลิดยังได้พิสูจน์ให้เห็นว่า ในระบบเลขจำนวนเฉพาะ จะมีจำนวนตัวเลขจำนวนเฉพาะได้อนันต์

                    แฟร์มาต์ได้ทำการศึกษาเลขจำนวนเฉพาะ และได้พิสูจน์ให้เห็นว่า ตัวเลขจำนวนเฉพาะใด ๆ ที่มีรูปแบบเป็น
4n + 1 ตัวเลขจำนวนเฉพาะนี้จะเขียนให้อยู่ในรูปแบบของตัวเลขยกกำลังสองของตัวเลขสองตัวรวมกัน  เช่น

                                                                                                              5   เป็นเลขจำนวนเฉพาะ
                                                                                                              5 = 4n + 1   =  4 x 1 + 1        (n = 1)
                                                                              ซึ่งเขียนได้  เป็น
                                                                                                              5 = 22 + 12
                                                                              หรือตัวอย่าง
                                                                                                            13 = 4 x 3 + 1
                                                                              เขียน
                                                                                                            13 = 32 + 22

                    แฟร์มาต์ยังพิสูจน์ให้เห็นว่า 2n + 1 เป็นเลขจำนวนเฉพาะ ถ้าหาว่า n มีค่าเป็นตัวเลขของสองยกกำลัง  เช่น

                                                                                                            21 + 1 = 3
                                                                                                            22 + 1 = 5
                                                                                                            24 + 1 = 17
                                                                                                            28 + 1 = 257
                                                                                                                           .
                                                                                                                           .
                                                                                                                           .
                                                                                                       n = 1, 2, 4, 8, 16,....

                    ตัวเลขจำนวนเฉพาะในกรณีนี้เรียกว่า ตัวเลขแฟร์มาต์  หลังจากนั้นต่อมาอีกประมาณ 100 ปี    ออยเลอร์ (Euler)   ได้พิสูจน์ให้เห็นว่าที่แฟร์มาต์ กล่าวมานี้ไม่เป็นจริงเพราะ  232 + 1  เท่ากับ 4,294,967,297  เป็นตัวเลขที่ไม่ใช่เลขจำนวนเฉพาะ เพราะหารด้วย 641 ได้ลงตัว

                     Marin Mersenne ได้ทำการศึกษาเลขจำนวนเฉพาะในรูปแบบ 2n - 1 ซึ่งพบว่า 2n - 1 ไม่เป็นจำนวนเฉพาะทุกตัว  ตัวเลขจำนวนเฉพาะที่อยู่ในรูป  2n - 1 เรียกว่า  Mersenne number จนถึงปัจจุบันนี้มีผู้พบตัวเลข Merssenne  37 ตัว  ตัวเลขที่ใหญ่ที่สุด คือ 23,021,337 - 1 เป็นเลขจำนวนเฉพาะที่มีขนาด 909526 ตัวเลข

                    จากการศึกษาเลขจำนวนเฉพาะมาตั้งแต่อดีตจนถึงปัจจุบัน  ยังมีคำถามที่ยังหาคำตอบไม่ได้เกี่ยวกับเลขจำนวนเฉพาะอยู่มากมาย เช่น
                                            -    มีเลขจำนวนเฉพาะที่อยู่ในรูปแบบ n2 + 1  อยู่อนันต์ตัว
                                            -    ระหว่างตัวเลข n2 และ (n + 1)2 อย่างต้องมีเลขจำนวนเฉพาะอยู่ด้วย
                                            -    ตัวเลขแฟร์มาต์ที่เป็นเลขจำนวนเฉพาะมีได้อนันต์ตัว

                    ความคิดเกี่ยวกับเรื่องเลขจำนวนเฉพาะ จึงเป็นโจทย์ที่ยังต้องการหาผู้คิดค้นได้อีก

 

ที่มา : รศ. ยืน ภู่วรวรรณ, สำนักบริการคอมพิวเตอร์ มหาวิทยาลัยเกษตรศาสตร์
http://blog.eduzones.com/dena/4114

Advertisement


TAGS ที่เกี่ยวข้อง >> ปิแอร์ เดอ แฟร์มาต์ นัก คณิตศาสตร์ , , ปิแอร์ , เดอ , แฟร์มาต์ , นัก , คณิตศาสตร์ << คลิกอ่านเพิ่มเติม

≡ เรื่องอื่นๆ ที่น่าอ่าน ≡

คลิกอ่าน!
คลิกอ่าน!
คลิกอ่าน!
คลิกอ่าน!
การวัดมุมในระนาบดิ่ง

การวัดมุมในระนาบดิ่ง
เปิดอ่าน 12,733 ครั้ง
คลิกอ่าน!
คลิกอ่าน!
Advertisement

≡ เรื่องน่าสนใจในหมวดหมู่นี้ ≡
การคูณด้วยไม้ตะเกียบแบบบูรณาการ (ชมคลิป)☕ คลิกอ่านเลย
การคูณด้วยไม้ตะเกียบแบบบูรณาการ (ชมคลิป)
เปิดอ่าน 18,630 ครั้ง
คณิตศาสตร์ง่ายๆแต่แปลกดีแท้☕ คลิกอ่านเลย
คณิตศาสตร์ง่ายๆแต่แปลกดีแท้
เปิดอ่าน 54,180 ครั้ง
เคล็ดเด็กเก่งวิชา เรขาคณิต-พีชคณิต☕ คลิกอ่านเลย
เคล็ดเด็กเก่งวิชา เรขาคณิต-พีชคณิต
เปิดอ่าน 11,189 ครั้ง
ความน่าจะเป็น☕ คลิกอ่านเลย
ความน่าจะเป็น
เปิดอ่าน 49,801 ครั้ง
ห.ร.ม. และ ค.ร.น.☕ คลิกอ่านเลย
ห.ร.ม. และ ค.ร.น.
เปิดอ่าน 69,922 ครั้ง
Advertisment

≡ เรื่องน่าอ่าน/สาระน่ารู้ ≡

ประเภทและอัตราเงินบำรุงการศึกษาและค่าเล่าเรียนประเภทและอัตราเงินบำรุงการศึกษาและค่าเล่าเรียน
เปิดอ่าน 19,459 ครั้ง
8 วิธีปราบสภาวะกินอาหารตามอารมณ์ให้อยู่หมัด8 วิธีปราบสภาวะกินอาหารตามอารมณ์ให้อยู่หมัด
เปิดอ่าน 8,331 ครั้ง
ผวาทั้งเอเชีย ข้าวพลาสติกเมดอินไชน่าระบาด กินแล้วอาจถึงตายผวาทั้งเอเชีย ข้าวพลาสติกเมดอินไชน่าระบาด กินแล้วอาจถึงตาย
เปิดอ่าน 16,246 ครั้ง
ตุ๊กตาดินเผา เสริมฮวงจุ้ยให้บ้านเราตุ๊กตาดินเผา เสริมฮวงจุ้ยให้บ้านเรา
เปิดอ่าน 9,362 ครั้ง
มารยาทในการพูดมารยาทในการพูด
เปิดอ่าน 98,441 ครั้ง

เกมส์ รวมเกมส์สนุกๆ มากมาย
สนามเด็กเล่น

แหล่งรวมเกมส์ เกมส์ให้เล่นมากมาย ศูนย์รวมเกมส์สนุกๆ เกมส์ความรู้ เกมส์ลับสมอง เกมส์ประลองยุทธ แหล่งรวบรวมข้อมูล เกมส์ เกมส์ออนไลน์ เกมส์มันๆ เกมส์ตัดผม ไว้มากมายที่นี่ ให้เด็กๆได้เลือกเล่นมากมาย คลิกเลย

 
 
หมวดหมู่เนื้อหา
[ข่าว/ประกาศ] [บทความเทคโนโลยีการศึกษา] [Technology] [e-Learning] [Graphics & Multimedia] [OpenSource & Freeware] [ซอฟต์แวร์แนะนำ] [ทฤษฎีทางการศึกษา] [เครื่องมือและเทคนิคการถ่ายภาพ] [Hot Issue] [Research Library] [Questions in ETC] [แวดวงนักเทคโนฯ] [ข่าวการศึกษา] [คุณครูควรรู้ไว้] [คณิตศาสตร์] [วิทยาศาสตร์] [ภาษาต่างประเทศ] [ภาษาไทย] [สุขศึกษาและพลศึกษา] [สังคมศึกษา ศาสนาและวัฒนธรรม] [ศิลปศึกษาและดนตรี] [การงานอาชีพและเทคโนโลยี] [My Profile] [เรื่องราวจากสมาชิก] [เตรียมประเมินวิทยฐานะ] [ความรู้ทั่วไป] [ผลงานวิชาการเล่มเต็ม] [ข่าวจากกระทรวงศึกษาธิการ] [สาระดีๆจากนานมีบุ๊คส์] [ภาพอบรม/สัมมนา] [การวิจัยทางการศึกษา] [โปรแกรม/เครื่องมือสำหรับครู] [ผู้สนับสนุน] [เกมส์] [งานราชการ/รัฐวิสาหกิจ/บริการสังคม] [คลิปวิดีโอ] [บทความการศึกษา] [infoGraphics] [เกาะกระแสโลกสังคมออนไลน์]

ครูบ้านนอกดอทคอม

เว็บไซต์เพื่อครู ข่าวการศึกษา ความรู้ การศึกษาไทย

      kroobannok.com

© 2000-2020 Kroobannok.com  
All rights reserved.


Design by : kroobannok.com


ครูบ้านนอกดอทคอม
การจัดอันดับของ Truehits Web Directory

วิธีนำแบนเนอร์ของครูบ้านนอก.คอมไปแปะในเว็บท่าน บันทึกภาพแบนเนอร์นี้และลิงค์มาที่เราครับ (มีแบนเนอร์ 2 แบบ)
 

ครูบ้านนอกดอทคอม เว็บไซต์ของครูตัวเล็กๆ คนหนึ่ง ที่หวังเพียง ใช้เป็นช่องทางในการสื่อสาร แลกเปลี่ยน เพิ่มพูนความรู้ และให้ข่าวสาร ที่ทันสมัยต่อเหตุการณ์แก่คุณครู ผู้ปฏิบัติงานในทุกพื้นที่ของประเทศไทย เพื่อความเจริญงอกงามในปัญญา และเจริญก้าวหน้าในวิชาชีพ

เว็บนี้ถือกำเนิดเมื่อ 5 มกราคม 2548

Email : kornkham@hotmail.com
Tel : 081-3431047

สนใจสนับสนุนเรา โดยลงโฆษณา
คลิกดูรายละเอียดที่นี่ครับ